Log-sobolev, Isoperimetry and Transport Inequalities on Graphs

نویسندگان

  • YUTAO MA
  • LIMING WU
چکیده

In this paper, we study some functional inequalities (such as Poincaré inequalities, logarithmic Sobolev inequalities, generalized Cheeger isoperimetric inequalities, transportation-information inequalities and transportation-entropy inequalities) for reversible nearest-neighbor Markov processes on a connected finite graph by means of (random) path method. We provide estimates of the involved constants. MSC 2010 : 60E15; 05C81; 39B72.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Sobolev, Isoperimetry and Transport Inequalities on Graphs

In this paper, we study some functional inequalities (such as Poincaré inequality, logarithmic Sobolev inequality, generalized Cheeger isoperimetric inequality, transportation-information inequality and transportation-entropy inequality) for reversible nearest-neighbor Markov processes on connected finite graphs by means of (random) path method. We provide estimates of the involved constants.

متن کامل

Isoperimetry and Symmetrization for Logarithmic Sobolev Inequalities

Using isoperimetry and symmetrization we provide a unified framework to study the classical and logarithmic Sobolev inequalities. In particular, we obtain new Gaussian symmetrization inequalities and connect them with logarithmic Sobolev inequalities. Our methods are very general and can be easily adapted to more general contexts.

متن کامل

Logarithmic Harnack inequalities∗

Logarithmic Sobolev inequalities first arose in the analysis of elliptic differential operators in infinite dimensions. Many developments and applications can be found in several survey papers [1, 9, 12]. Recently, Diaconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for Markov chains. The lower bounds for log-Sobolev constants can be used to improve convergence bounds for ...

متن کامل

Modified Log-sobolev Inequalities and Isoperimetry

We find sufficient conditions for a probability measure μ to satisfy an inequality of the type ∫ Rd fF ( f ∫ Rd f 2 dμ ) dμ ≤ C ∫ Rd f2c∗ ( |∇f | |f | ) dμ + B ∫ Rd f dμ, where F is concave and c (a cost function) is convex. We show that under broad assumptions on c and F the above inequality holds if for some δ > 0 and ε > 0 one has ∫ ε 0 Φ ( δc [ tF ( 1t ) Iμ(t) ]) dt <∞, where Iμ is the isop...

متن کامل

Modified Logarithmic Sobolev Inequalities in Discrete Settings

Motivated by the rate at which the entropy of an ergodic Markov chain relative to its stationary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap) inequality. We sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015